Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33174840

RESUMO

Signaling molecules activate distinct patterns of gene expression to coordinate embryogenesis, but how spatiotemporal expression diversity is generated is an open question. In zebrafish, a BMP signaling gradient patterns the dorsal-ventral axis. We systematically identified target genes responding to BMP and found that they have diverse spatiotemporal expression patterns. Transcriptional responses to optogenetically delivered high- and low-amplitude BMP signaling pulses indicate that spatiotemporal expression is not fully defined by different BMP signaling activation thresholds. Additionally, we observed negligible correlations between spatiotemporal expression and transcription kinetics for the majority of analyzed genes in response to BMP signaling pulses. In contrast, spatial differences between BMP target genes largely collapsed when FGF and Nodal signaling were inhibited. Our results suggest that, similar to other patterning systems, combinatorial signaling is likely to be a major driver of spatial diversity in BMP-dependent gene expression in zebrafish.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Optogenética , Proteínas de Peixe-Zebra/metabolismo , Animais , Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Cinética , Proteína Nodal/genética , Proteína Nodal/metabolismo , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Dev Biol ; 460(1): 2-11, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32008805

RESUMO

Embryonic development is a largely self-organizing process, in which the adult body plan arises from a ball of cells with initially nearly equal potency. The reaction-diffusion theory first proposed by Alan Turing states that the initial symmetry in embryos can be broken by the interplay between two diffusible molecules, whose interactions lead to the formation of patterns. The reaction-diffusion theory provides a valuable framework for self-organized pattern formation, but it has been difficult to relate simple two-component models to real biological systems with multiple interacting molecular species. Recent studies have addressed this shortcoming and extended the reaction-diffusion theory to realistic multi-component networks. These efforts have challenged the generality of previous central tenets derived from the analysis of simplified systems and guide the way to a new understanding of self-organizing processes. Here, we discuss the challenges in modeling multi-component reaction-diffusion systems and how these have recently been addressed. We present a synthesis of new pattern formation mechanisms derived from these analyses, and we highlight the significance of reaction-diffusion principles for developmental and synthetic pattern formation.


Assuntos
Padronização Corporal/fisiologia , Desenvolvimento Embrionário/fisiologia , Modelos Biológicos , Animais , Biologia Computacional , Biologia do Desenvolvimento/métodos
3.
Elife ; 42015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25869585

RESUMO

Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients.


Assuntos
Proteína Nodal/farmacologia , Ativação Transcricional , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Endoderma/efeitos dos fármacos , Endoderma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Cinética , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Transgenes , Peixe-Zebra/embriologia , Peixe-Zebra/genética
4.
Elife ; 3: e03159, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225054

RESUMO

Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆(9)-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring.


Assuntos
Actomiosina/metabolismo , Canabinoides/farmacologia , Forma Celular/efeitos dos fármacos , Neurônios/citologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Feminino , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Camundongos , Miosina Tipo II/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...